News & Events

New Study Analyzes Stability of Compounded Bevacizumab Syringes

Storage stability of bevacizumab in polycarbonate and polypropylene syringes

H Khalili, G Sharma, A Froome, P T Khaw and S Brocchini





To compare and examine the storage stability of compounded bevacizumab in polycarbonate (PC) and polypropylene (PP) syringes over a 6-month period. PC syringes have been used in a recent clinical study and bevacizumab stability has not been reported for this type of syringe.




Repackaged bevacizumab was obtained from Moorfields Pharmaceuticals in PC and PP syringes. Bevacizumab from the stored syringes was analysed at monthly time points for a 6-month period and compared with bevacizumab from a freshly opened vial at each time point. SDS-PAGE electrophoresis and size-exclusion chromatography (SEC) was used to observe aggregation and degradation. Dynamic light scattering (DLS) provided information about the hydrodynamic size and particle size distribution of bevacizumab in solution. VEGF binding and the active concentration of bevacizumab was determined by surface plasmon resonance (SPR) using Biacore.




SDS-PAGE and SEC analysis did not show any changes in the presence of higher molecular weight species (HMWS) or degradation products in PC and PP syringes from T0 to T6 compared with bevacizumab sampled from a freshly opened vial. The hydrodynamic diameter of bevacizumab in the PC syringe after 6 months of storage was not significantly different to bevacizumab taken from a freshly opened vial. Using SPR, the VEGF binding activity of bevacizumab in the PC syringe was comparable to bevacizumab taken from a freshly opened vial.




No significant difference over a 6-month period was observed in the quality of bevacizumab repackaged into prefilled polycarbonate and polypropylene syringes when compared with bevacizumab that is supplied from the vial.


Link to Article






Read More

Ready to order? Contact us now.

We pride ourselves on providing the highest level of customer service and prompt delivery.